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-- @(r)d~ @(r0) ~ 0 

_1 oo 

= V ~'~'o (cos Oh)Pn (cos 0) , (7) 

which is not a function of ~h. The weighted projection 
@(r~) is defined by 

f) @(r~) = ½ (r) sin OdO 

-- ,~ .~ ~ F(h)anjn(~xr) .2J .L~ cos m(~-~oh) , (8) 
Y h n = 0  t m = l  

where Ln m is a numerical constant. In the case of Oh, 
L~-values for (n, m) are" 

(4, 4) = 0.3333, 

(8, 4) = 0.044~4, 
(10, 4) = -0.07619, 
(12, 4) = 0.01682, 

(12, 12)=  0.1515. 

(6, 4) = - 0.4000, 
(8, 8) --- 0.2063, 

(10, 8) = -0.2159, 
(12, s) = 0.4140, 

By following the example given above, one can derive 
the results for other space groups. 
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Elimination of termination of series error in generalized projections can be achieved by use of 
(Fo--Fc) Fourier coefficients. Use of a particular kind of average is capable of minimizing the 
somewhat smaller errors in co-ordinates arising from inaccurately known temperature factors. 

I n t r o d u c t i o n  

Since the first use of generalized projections (Clews & 
Cochran, 1949; Hughes & Pfeiffer, 1949) the detailed 
theory (Cocbran & Dyer, 1952) has become useful in 
applications in which three-dimensional information is 
obtainable by use of computational methods normally 
used in two-dimensional studies. Of the numerous 
applications (Dyer (1951), Raeuchle & Rundle (1952), 
Zussman (1953), Curtis & Pasternak (1955), White & 
Clews (1956), Huber (1957), Bryden (1957), Shoe- 
maker, Shoemaker & Wilson (1957), Sutor (1958), 
Bryden (1958), Brunton, Steinfink & Beck (1958)) 
those of most interest here are: (a) the difference 
method (Zachariasen, 1954) to locate hydrogen atoms 
at specific levels in the unit cell; (b) the 'modulus 
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projection' employed by Fridrichsons & Mathieson 
(1955), as well as by Philips (1956) to sharpen atoms 
viewed in projection by a suitable combination of the 
two possible generalized projections; (c) the proof 
(Speakman, 1953) of non-planarity of a nearly planar 
molecule; (d) an improved method to determine the 
shape of overcrowded molecules (Rossmann (1958), 
Trotter (1958)) and capable of demonstrating the 
slight, but unexpected, non-planarity in 2 : 3-8 : 9 
dibenzperylene (Robertson & Rossmann, 1958). Since 
it is by no means obvious that  the method of genera- 
lized projections could have been developed to the 
extent indicated by these latter examples, we have 
felt it desirable to report these recent improvements. 

R e d u c t i o n  of  s e r i e s - t e r m i n a t i o n  e r r o r  

We follow the notation of Cochran & Dyer (1952) 
who modify the ordinary electron density, e.g. @ (x, z) 
when K = 0, to give the generalized density, 

57* 



830 I M P R O V E M E N T S  I N  T H E  M E T H O D  OF G E N E R A L I Z E D  P R O J E C T I O N S  

1 

× cos 2xe[h(X-Xn) +l(z-zn)] 

near  an a tom at  (xn, Zn). Thus aK is exact ly  ~ when 
K = 0, and differs but  little for small K (Philips, 
1954). The products  aK sin 27eKy and aK cos 2~Ky 
are the weigbted sine or cosine densities, respectively. 

The errors due to te rminat ion  of series are mini- 
mized by  the  use of difference methods.  The resulting 
cosine and sine projections are 

CD = 1_;.2.2 ([FoI-[F,I) cos ( 0 - a )  , 
2 1  h l 

1 
S~ = - ~  ~ ~ ([Foi-[Fcl)sin ( 0 - ~ )  , 

where 0 = 2z(hx+lz), and c~ is the usual phase angle 
for a plane. Errors  of up to 10% in peak heights of 
the  ordinary  ]Fo[ synthesis,  if in terpreted as changes 
in sin 27~Ky or cos 2~Ky, can cause large errors in the 
y co-ordinates. Such errors can be great ly  reduced 
by  the use of difference syntheses. 

The difference between the observed and calculated 
weighted densities is 

Cf~ = aK, o COS 2~Kyo--aK, ~ cos 2~Ky~ (1) 

for the cosine series, with a similar expression for the 
sine series. Thus the  new value of yo can be found more 
accurate ly  if the tempera ture  factor  is near ly  correct, 
so t ha t  ~ , o  = aK,~ is a valid approximat ion.  More- 
over, an approximate  value of aK, o is usually avail- 
able from the known electron density,  @, of the zero 
layer  line projection. In  non-centrosymmetr ic  struc- 
tures equat ion (1) tends to underes t imate  the  correc- 
t ion to y, so t ha t  it is sometimes helpful to double 
the  value of C D and S D, as was done in the  refine- 
ment  of the (hll) reflections of 1 : 9 - 5 : 1 0  diperi- 
naphthy lene  anthracene (Rossmann,  1958), or to 
double the  resulting shift (yo-yc) as was done by  
Trot ter  (1958) in the ref inement  using the (hll) 
planes of d inaph tha  ( 7 ' : 1 ' - 1 : 1 3 ) ( 1 " : 7 " - 6 : 8 )  pero- 
pyrene (Clar, Kelly, Rober tson & Rossmann,  1956). 

R e d u c t i o n  of e r r o r  due  to i n a c c u r a t e  

t e m p e r a t u r e  f a c t o r s  

Suppose the  t empera tu re  factor  is wrong in such 
way  t h a t  az:,o ~> az:,~. Then equat ion (1), and the 
corresponding equat ion for the  sine function, gives 
values  of cos 2zKyo and sin 2nKyo which are too large 
when calculated on the  basis t ha t  aK, o = aK,~. But  
these t r igonometric  functions va ry  in opposite senses. 
Hence an averaging process between the refined co- 
ordinates,  O~o/2~K and O~o/2~K, of the separate  cosine 
and sine series, respectively, can be used to minimize 
the  effect due to choosing an incorrect t empera ture  
factor.  Let  

7 = {(cos~ 0~+sin~ 0 D ~ - I } .  

H a d  no error been made  in choosing the value of 
a2~,o to determine 0~ and 0~ then ~, = 0. However ,  
if (~,o was chosen too small, it follows t h a t  ~ is 
positive. That  means if too much thermal  motion was 
assumed for an a tom,  ~, is positive, and vice versa. 
The co-ordinates 0~ and 0~o, obtained during refine- 
ment  can therefore be corrected by  means of the  
formulae 

- 1 - 1 
c o s 0 g = ~ c o s 0  c and s i n 0 ~ = ~ s i n 0 ~ .  

I t  should, however,  be noted tha t  the sine generalized 
projection is accurate  near  0 or g,  while the  cosine 
projection is accurate  near  z /2  or 3~/2. Thus it is 

necessary to take  a mean between 0~ and 0So in order 
to obtain roughly the  same accuracy in all par t s  of 
the unit  cell. We have found tha t  a useful averaging 
function is 

0~a~ = (0'o cos 0~+0~ sin 0D/(cos 0~o+sin 0'o) • 

The s t rength  of the expression for 7 is dcmonst ra ted  
in Fig. 2 which shows a plot of 7 against  the distance 
of a toms from the molecular center in 2 : 3 - 8 : 9  
dibenzperylene. Fur ther ,  the y co-ordinates obtained 
by  the method described above are in excellent 
agreement  with an exhaust ive  least-squares refine- 
ment  of the (hO1) and (hl/) da ta ,  as sho~n  in Table 1. 

Table 1. The y co-ordinates of the carbon atoms in one 
asymmetric unit of 2 : 3-8 : 9 dibenzperylene expressed as 

fractions of the cell edge b (5.23 ~) .  

Estimated standard deviations of y co-ordinates determined 
by generalized projections and by least squares are 0.02 /~ 

(0.004 of b) and 0.012 A (0.002 of b), respectively 

Atom Planar Gen. proj. Least-sq. 

A 0-436 0.435 0.443 
B 0.254 0.258 0.250 
C 0.073 0.066 0.063 
D --0.111 --0.111 --0-109 
E -- 0-274 -- 0.274 -- 0.284 
F -- 0.290 -- 0"280 -- 0"289 
G 0-608 0.614 0.613 
H 0.612 0.617 0.610 
I 0-788 0.795 0.788 
J 0.775 0.785 0.787 
K 0.612 0-611 0.602 
L 0.452 0.428 0.419 
M 0.449 0.435 0-432 
2/ 0-262 0-279 0'266 

Comparison with the  best p lanar  model shows clearly 
tha t  the molecule is non-planar ,  especially around 
a toms L and M (Fig. 1). Comparison of exper imental  
bond lengths for the p lanar  and non-planar  s t ructures  
with the  lengths expected from molecular orbital  
calculations also favors the non-planar  model. Thus 
the experimental  non-planar  s t ructure  and the  best 
p lanar  model show average deviations of bond lengths 
of 0.02 /~ and 0.04 /~, respectively, when compared 
with the MO model. 
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Fig.  1. The 2 : 3-8 : 9 d ibenzperyl ine  molecule.  

proaching uni ty .  Similar ly  C~ is most accurate when 
sin 2~Ky~ is near  uni ty .  Thus in evaluat ing (yo-yc) 
by  means  of the equat ion above, the  greater weight 
is given to the more accurate difference function. The 
effect of any  error in the value assigned to aK, o is 
small  since only the shift  in the atomic co-ordinate 
is calculated, hence the lef t -hand side is roughly 
proport ional  to (yo-yc) when the lat ter  is small.  

Again from equat ion (1) and its equivalent  sine 
function, we m a y  derive another  expression useful to 
refine the tempera ture  factors: 

S~ sin 2zKy~+ C D cos 2x~Ky¢ 
= aK, o cos 2zK(yo-y~) - (~K, ~. 

0.05 

X 
t 

-0.05 

--0"10 
Fig. 2. Graph showing relat ionship be tween  y and the  dis tance,  

d, of a toms  f rom the  molecular  center  in /~, of 2 : 3 - 8 : 9  
dibenzperylene.  ~ is a measure  of the  d iscrepancy be tween  
the  y co-ordinates  de te rmined  f rom the  cosine and  sine 
generalized project ions.  

An alternative method  of re f inement  

If, instead of refining the cosine and sine series quite 
separately,  both series are refined s imultaneously,  
then  it is possible to refine the x, y, z and B para- 
meters all at the same time, and the effects of random 
errors of s tructure factors will be much reduced. The 
m a x i m u m  gradients of a certain function, deduced 
below, gives the direction and size of the atomic shifts 
parallel  to the plane of projection at each site, while 
the value of another  function at each atomic position 
is a measure of the correctness of the temperature  
factors applied to the atoms. 

An expression useful for the ref inement  of the co- 
ordinates parallel  to the direction of projection can be 
obtained from equation (1) and its corresponding sine 
funct ion : 

S~ cos 2~Kyc-C~ sin 2~Kyc = (~E, o sin 2~K(yo-yc) • 

The quan t i ty  S~ is most accurate when 27iKyc is 
nearer  0 or ~, i.e., when cos 2xeKyc has a value ap- 

When  (yo-yo) is small  the righ~-hand term becomes 
(aK, o--CK, c), which is proport ional  to - A B .  The 
effect of an error, AB, in the tempera ture  factor in 
S~ will be proport ional  to the value of sin 2xcKyc and 
tha t  of C D to cos 2~Ky~. The above equation preserves 
this  weighting. The expression (aK, o-(~K,c) in a 
difference generalized projection is s imilar  to (Qo-~c) 
in an ordinary difference synthesis  and the corrections 
to B can be applied by the usual  methods for difference 
projections. 

Last ly,  a comparison with the zero-layer project ion 
(Cochran, 1951) gives us a funct ion for the ref inement  
of the co-ordinates parallel  to the direction of projec- 
tion. We have 

/I (r) sin 2zKy¢ = \---~-r /r= ° (2paI~, o) , 

A (r) cos 2zKy~ = \ W l r = O  (2pax, o), 

when A(r) is the required shift  in the atomic co- 
ordinates in the plane normal  to the direction of 
projection. The direction of shift of the atom is along 
the line of m a x i m u m  gradient  but  will be in the  
positive or negat ive sense depending on the sign of 
sin 2x~Ky~ or cos 27~Kyc, respectively. By combining 
the above two expressions we have 

A(r) = { d  (SD sin2~Ky~+CD cos 2~Kyc)}r=o / 2P(~l~,o. 

The accuracy of the atomic shifts, de termined from 
S D and C D, are weighted in a physical ly  reasonable 
way by the magni tudes  of sin 2~Kyc and cos 2zKy~, 
respectively. Thus the function 

(S~ sin 2zKyc + C~ cos 27~Ky~) 

m a y  be plotted in the vicini ty  of atomic sites. The 
m a x i m u m  gradients  then  give the direction and size 
of the atomic shifts parallel  to the plane of projection 
at each site. 

I t  can be proved tha t  the use of this funct ion for 
the ref inement  of x, z and B, together with the func- 
t ion given above for the  ref inement  of y, is equivalent  
to a least-squares procedure. In  a proof of this  state- 
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ment  it is necessary to assume t h a t  the  expression 
.~w(IFol-[Fc[)  2 is being minimized over the  same 
q 

q te rms  as employed for the  generalized projection 
work, where co is the weight appl ied to each reflection. 

I t  then  follows tha t  co = 1If in the  case of positional 

parameters ,  or co = f -1 .  ~ [ s in  ~ 0 for t empera ture  fac- 
tor  p a r a m e t ~ s  ff the two methods are to be str ict ly 

analogous. ( f  is the  un i t a ry  scat ter ing factor  for each 
plane.) 

The c a l c u l a t i o n  of difference weighted 
~,eneralized densities 

Two co-ordinates per a tom are generally known to a 
fair degree of accuracy when a difference generalized 
projection is about  to be calculated. The thi rd  co- 
ordinates and the  t empera ture  factors can then be 
deduced from the peak  heights a t  atomic sites. For  
instance, the difference cosine weighted generalized 
densi ty  of diper inaphthylene anthracene (P21) when 
K -- 1, is given by 

C~(~, ~n) 
2 

= - -  2~ 2~ [{(IFol-IFol)s in ~} sin 2 . ( h x .  + l z . ) ] .  
A h  z 

The quan t i ty  sin 2z(hxn+lzn) was listed for the _h r 
independent  a toms for every observed (hll) plane 
(see Table 2). Then every row, corresponding to the 

Table 2. Corner of table showing arrangement of 
sin 2~(hx~+lz,) quantities for 1:9-5  : 10 diperinaph- 

thylene anthracene 

Atoms 

hll " A 1 B 1 C 1 D 1 E 1 F 1 
110 0-56 0.24 0.95 1.00 0.64 0.33 . . . . . .  
210 0.93 0.48 0-59 0.17 0.98 0.60 
310 0.97 0-68 0-59 0-97 0-86 0.83 
410 0.68 0.85 0.95 0.33 0.33 0-96 
510 0.16 0.95 0.00 0.91 0.36 1.00 

values of sin 2~(hx,~+lz,~) for a par t icular  plane, mus t  
be multiplied by the common factor  

{ 2  (IFol-lFc]) sin ~} . 

This could be done very  quickly on a slide rule as only 
two figure accuracy was required. Final ly all columns 

(each column corresponding to a par t icu lar  a tom) 
were added up to give the difference generalized den- 
si ty C D at  the atomic sites. 

F rom the same table listing sin 27~(hxn+lzn) both  
real and imaginary  par ts  of the s t ruc ture  factors  could 
also be calculated. E v e r y  column (corresponding to a 
certain carbon atom) was multiplied by the  common 
factor  sin 2~yn or cos 2gyn. Final ly  all rows were 
added to give the  values of A(hl l )  or B(hll) ,  re- 
spectively. 

We wish to express our thanks  to Prof.  J . M .  
Rober tson for his constant  encouragement  of this 
work, and to Prof. W. N. Lipscomb who allowed one 
of us (M. G. R.) to carry out the  least-squares t rea t -  
ment  on the Remington  R a n d  UNIVAC 1103 com- 
puter .  
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