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which is not a function of ¢,. The weighted projection
o(r) is defined by

o(rp) = éSne

0

(r) sin 640

§° (h)anynw){ 3 L cos mip— %)}, ®)

where L7 is a numerical constant. In the case of O,
LZ-values for (n,m) are:

4,4) = 0-3333, (6, 4) = —0-4000,
8,4) = 0-04444, (8,8) = 0-2063,
(10,4) = —0-07619, (10, 8) = —0-2159,
(12,4) = 0-01682, (12,8) = 0-4140,
(12,12) = 0-1515.
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By following the example given above, one can derive
the results for other space groups.
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Some Improvements in the Method of Generalized Projections
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Elimination of termination of series error in generalized projections can be achieved by use of

(Fo—

F.) Fourier coefficients. Use of a particular kind of average is capable of minimizing the

somewhat smaller errors in co-ordinates arising from inaccurately known temperature factors.

Introduction

Since the first use of generalized projections (Clews &
Cochran, 1949; Hughes & Pfeiffer, 1949) the detailed
theory (Cochran & Dyer, 1952) has become useful in
applications in which three-dimensional information is
obtainable by use of computational methods normally
used in two-dimensional studies. Of the numerous
applications (Dyer (1951), Raeuchle & Rundle (1952),
Zussman (1953), Curtis & Pasternak (1955), White &
Clews (1956), Huber (1957), Bryden (1957), Shoe-
maker, Shoemaker & Wilson (1957), Sutor (1958),
Bryden (1958), Brunton, Steinfink & Beck (1958))
those of most interest here are: (a) the difference
method (Zachariasen, 1954) to locate hydrogen atoms
at specific levels in the unit cell; (b) the ‘modulus
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projection’ employed by Fridrichsons & Mathieson
(1955), as well as by Philips (1956) to sharpen atoms
viewed in projection by a suitable combination of the
two possible generalized projections; (c) the proof
(Speakman, 1953) of non-planarity of a nearly planar
molecule; (d) an improved method to determine the
shape of overcrowded molecules (Rossmann (1958),
Trotter (1958)) and capable of demonstrating the
slight, but unexpected, non-planarity in 2:3-8:9
dibenzperylene (Robertson & Rossmann, 1958). Since
it is by no means obvious that the method of genera-
lized projections could have been developed to the
extent indicated by these latter examples, we have
felt it desirable to report these recent improvements.

Reduction of series-termination error

We follow the notation of Cochran & Dyer (1952)
who modify the ordinary electron density, e.g. o(x, 2)
when K = 0, to give the generalized density,

57%
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Og(x—Tn, 2—2n) = %%‘ ?f(hkl)

x €08 27 [h(x —2n) +1(z—22)]

near an atom at (Zn, zz). Thus og is exactly ¢ when
K =0, and differs but little for small K (Philips,
1954). The products og sin 27Ky and o cos 2nKy
are the weighted sine or cosine densities, respectively.

The errors due to termination of series are mini-
mized by the use of difference methods. The resulting
cosine and sine projections are

OF = 3.3 (|Fol - | cos (6~0)
ro1
8 = — = 3 (P~ |Fd) sin (0—2),
ko1

where 0 = 2n(hx+1z), and « is the usual phase angle
for a plane. Errors of up to 109 in peak heights of
the ordinary |F,| synthesis, if interpreted as changes
in sin 27Ky or cos 27Ky, can cause large errors in the
y co-ordinates. Such errors can be greatly reduced
by the use of difference syntheses.

The difference between the observed and calculated
weighted densities is

C% = og,,cos 2nKy,~og, . cos 2n Ky, (1)

for the cosine series, with a similar expression for the
sine series. Thus the new value of y, can be found more
accurately if the temperature factor is nearly correct,
so that og , = og,.is a valid approximation. More-
over, an approximate value of oy , is usually avail-
able from the known electron density, g, of the zero
layer line projection. In non-centrosymmetric struc-
tures equation (1) tends to underestimate the correc-
tion to y, so that it is sometimes helpful to double
the value of C% and 82, as was done in the refine-
ment of the (h1l) reflections of 1:9-5:10 diperi-
naphthylene anthracene (Rossmann, 1958), or to
double the resulting shift (y,—y.) as was done by
Trotter (1958) in the refinement using the (A1l)
planes of dinaphtha (7':1'-1:13)(1"":7"~6:8) pero-
pyrene (Clar, Kelly, Robertson & Rossmann, 1956).

Reduction of error due to inaccurate
temperature factors

Suppose the temperature factor is wrong in such a
way that oz , > og,. Then equation (1), and the
corresponding equation for the sine function, gives
values of cos 22Ky, and sin 27Ky, which are too large
when calculated on the basis that oy , = og, ., But
these trigonometric functions vary in opposite senses.
Hence an averaging process between the refined co-
ordinates, 05/2nK and 05/2nK, of the separate cosine
and sine series, respectively, can be used to minimize
the effect due to choosing an incorrect temperature
factor. Let
y = {(cos? 65 +sin? §5)F -1} .
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Had no error been made in choosing the value of
Og,, to determine 6 and §; then y = 0. However,
if og, was chosen too small, it follows that y is
positive. That means if too much thermal motion was
assumed for an atom, y is positive, and vice versa.
The co-ordinates 65 and 65, obtained during refine-
ment can therefore be corrected by means of the
formulae

T T |
cos §5 = 1 cos 05 and sin 65 = T, sn 0.

It should, however, be noted that the sine generalized
projection is accurate near 0 or sz, while the cosine

projection is accurate near /2 or 3x/2. Thus it is

necessary to take a mean between 65 and 65 in order
to obtain roughly the same accuracy in all parts of
the unit cell. We have found that a useful averaging
function is

Otinar = (65 cos 63+ 0 sin 65)/(cos 65+sin 65) .

The strength of the expression for y is demonstrated
in Fig. 2 which shows a plot of 9 against the distance
of atoms from the molecular center in 2:3-8:9
dibenzperylene. Further, the y co-ordinates obtained
by the method described above are in excellent
agreement with an exhaustive least-squares refine-
ment of the (A0!) and (21l) data, as shown in Table 1.

Table 1. The y co-ordinates of the carbon atoms in one
asymmetric unit of 2:3-8:9 dibenzperylene expressed as
fractions of the cell edge b (523 A).

Estimated standard deviations of y co-ordinates determined

by generalized projections and by least squares are 0-02 A
(0-004 of b) and 0-012 A (0-002 of b), respectively

Atom Planar Gen. proj. Least-sq.
A 0-436 0-435 0-443
B 0-254 0-258 0-250
C 0-073 0-066 0-063
D —0-111 —0-111 —0-109
B —0-274 —0-274 —0-284
F —0-290 —0-280 —0-289
Q 0-608 0-614 0-613
H 0612 0617 0-610
I 0-788 0:795 0-788
J 0-775 0-785 0-787
K 0-612 0-611 0-602
L 0-452 0-428 0-419
M 0-449 0-435 0-432
N 0-262 0-274 0266

Comparison with the best planar model shows clearly
that the molecule is non-planar, especially around
atoms L and M (Fig. 1). Comparison of experimental
bond lengths for the planar and non-planar structures
with the lengths expected from molecular orbital
calculations also favors the non-planar model. Thus
the experimental non-planar structure and the best
planar model show average deviations of bond lengths
of 0:02 A and 0-04 A, respectively, when compared
with the MO model.
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Fig. 1. The 2 : 3-8 : 9 dibenzperyline molecule.
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Fig. 2. Graph showing relationship between p and the distance,
d, of atoms from the molecular center in A, of 2:3-8:9
dibenzperylene. y is a measure of the discrepancy between
the y co-ordinates determined from the cosine and sine
generalized projections.

An alternative method of refinement

If, instead of refining the cosine and sine series quite
separately, both series are refined simultaneously,
then it is possible to refine the z,y,z and B para-
meters all at the same time, and the effects of random
errors of structure factors will be much reduced. The
maximum gradients of a certain function, deduced
below, gives the direction and size of the atomic shifts
parallel to the plane of projection at each site, while
the value of another function at each atomic position
is a measure of the correctness of the temperature
factors applied to the atoms.

An expression useful for the refinement of the co-
ordinates parallel to the direction of projection can be
obtained from equation (1) and its corresponding sine
function:

82 cos 2nKy,—C% sin 2nKy, = oz, ,sin 27K (Y,—~Y.) -

The quantity 8% is most accurate when 27Ky is
nearer 0 or ;, i.e., when cos 2nKy. has a value ap-
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proaching unity. Similarly C?2 is most accurate when
sin 27Ky, is near unity. Thus in evaluating (¥o—¥c)
by means of the equation above, the greater weight
is given to the more accurate difference function. The
effect of any error in the value assigned to og , is
small since only the shift in the atomic co-ordinate
is calculated, hence the left-hand side is roughly
proportional to (yo—y) When the latter is small.

Again from equation (I) and its equivalent sine
function, we may derive another expression useful to
refine the temperature factors:

82 sin 27Ky, +C% cos 2nKy,
= 0Og,o CcOos 2nK(.7/o“yc)_aK,c .

When (yo—%c) is small the right-hand term becomes
(0k,,—Ok,c), Wwhich is proportional to —AB. The
effect of an error, AB, in the temperature factor in
82 will be proportional to the value of sin 27Ky, and
that of C% to cos 2nKy.. The above equation preserves
this weighting. The expression (og ,—0g,.) in a
difference generalized projection is similar to (go—ge)
in an ordinary difference synthesis and the corrections
to B can be applied by the usual methods for difference
projections.

Lastly, a comparison with the zero-layer projection
(Cochran, 1951) gives us a function for the refinement
of the co-ordinates parallel to the direction of projec-
tion. We have

D
A(r) sin 2nKy, = (ﬁ{)

d?‘ /(2p01{,0) )

=0
d D

A(r) cos 2nKy, = (%) /(2730‘1(, o) s

r=0

when A(r) is the required shift in the atomic co-
ordinates in the plane normal to the direction of
projection. The direction of shift of the atom is along
the line of maximum gradient but will be in the
positive or negative sense depending on the sign of
sin 27Ky, or cos 2mKy., respectively. By combining
the above two expressions we have

d
Ar) = {—a—r (8% sin 27 Ky,+C% cos 2nKyc)} . / 200, 0-

The accuracy of the atomic shifts, determined from
S2 and C%, are weighted in a physically reasonable
way by the magnitudes of sin 27Ky. and cos 2nKye,
respectively. Thus the function

(8% sin 27 Ky. +C% cos 2nKyc)

may be plotted in the vicinity of atomic sites. The
maximum gradients then give the direction and size
of the atomic shifts parallel to the plane of projection
at each site.

It can be proved that the use of this function for
the refinement of z, z and B, together with the func-
tion given above for the refinement of y, is equivalent
to a least-squares procedure. In a proof of this state-
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ment it js necessary to assume that the expression
2 w(|Fo|—|Fc|)? is being minimized over the same
q

g terms as employed for the generalized projection
work, where w is the weight applied to each reflection.

It then follows that w = 1/f in the case of positional
parameters, or @ = ‘]?‘l.ﬂ;z/s,in2 6 for temperature fac-
tor parameters if the two methods are to be strictly
analogous. ( f is the unitary scattering factor for each
plane.)

The calculation of difference weighted
generalized densities

Two co-ordinates per atom are generally known to a
fair degree of accuracy when a difference generalized
projection is about to be calculated. The third co-
ordinates and the temperature factors can then be
deduced from the peak heights at atomic sites. For
instance, the difference cosine weighted generalized
density of diperinaphthylene anthracene (P2,) when
K =1, is given by

O{) (Tn, 2n)

2 Z[{(|1Fo|—|F¢|) sin «} sin 275 (htn +122)] .
1

| o

The quantity sin 27 (hx,+Ilz,) was listed for the N
independent atoms for every observed (hll) plane
(see Table 2). Then every row, corresponding to the

Table 2. Corner of table showing arrangement of
sin 27 (han+1lza) quantities for 1:9-5:10 diperinaph-
thylene anthracene

Atoms
ALl A, B, C, Dy E, F,
110 0-56 0-24 0-95 1-00 0-64 0-33
210 0-93 0-48 0-59 0-17 0-98 0-60
310 0-97 0-68 0-59 0-97 0-86 0-83
410 0-68 0-85 0-95 0-33 0-33 0-96
510 0:16 0-95 0-00 0-91 0-36 1-00

values of sin 25 (hx,+12,) for a particular plane, must
be multiplied by the common factor

{2 Fo-Fsinat

This could be done very quickly on a slide rule as only
two figure accuracy was required. Finally all columns

IMPROVEMENTS IN THE METHOD OF GENERALIZED PROJECTIONS

(each column corresponding to a particular atom)
were added up to give the difference generalized den-
sity CP at the atomic sites.

From the same table listing sin 27(hz,+12,) both
real and imaginary parts of the structure factors could
also be calculated. Every column (corresponding to a
certain carbon atom) was multiplied by the common
factor sin 27y, or cos 2my,. Finally all rows were
added to give the values of A(kll) or B(hll), re-
spectively.

We wish to express our thanks to Prof. J.M.
Robertson for his constant encouragement of this
work, and to Prof. W. N. Lipscomb who allowed one
of us (M. G. R.) to carry out the least-squares treat-
ment on the Remington Rand UNIVAC 1103 com-
puter.
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